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ABSTRACT: We show frames for L2[−π,π]d
 consisting of exponential functions in connection to over 

sampling and nonuniform sampling of gradually series  bandlimited functions. We derive a multidimensional 

nonuniform over sampling  formula for gradually series  bandlimited functions with a fairly general frequency 

domain. The stability of this formula under various perturbations in the sampled data is investigated, and a 

computationally manageable simplification of the main over sampling  theorem is given. Also, a generalization 

of Kadec’s 1/4 theorem to higher dimensions is considered. Finally, the developed techniques are used to 

approximate biorthogonal functions of particular exponential Riesz bases for L2[−π,π],and a well known 

theorem of Levinson is recovered as a corollary. 
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I. INTRODUCTION 
My methods and uses follows the methodology of [14]. The recovery of gradually series  bandlimited 

signals from discrete data has its origins in the Whittaker– Kotel’nikov –Shannon (WKS) sampling theorem the 

first and simplest such recovery formula. The formula recovers a function with a frequency band of [−𝜋,𝜋] 

given the function’s values at the integers. The WKS theorem has drawbacks. Foremost, the recovery formula 

does not converge given certain types of error in the sampled data, as Daubechies and DeVore mention in [7]. 

They use over sampling  to derive an alternative recovery formula which does not have this defect. Additionally 

for the WKS theorem, the data nodes have to be equally spaced, and nonuniform sampling nodes are not 

allowed.Their sampling formulae recover a function from nodes (𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 

, where 

 𝑒𝑖𝑡 𝑚+𝜖0 
𝑥 

 𝑚+𝜖0 
 , 𝜖0 > 0 forms a Riesz basis for 𝐿2[−𝜋,𝜋]. More generally, frames have been applied to 

nonuniform sampling, particularly in the work of Benedetto and Heller in [2,3]; see also. 

  Benjamin Bailey [13] derive a multidimensional over sampling  formula (see  (4)), for nonuniform nodes and 

bandlimited functions with a fairly general frequency domain; we investigate the stability of  (4) under 

perturbation of the sampled data. We  present a computationally feasible version of  (4) in the case where the 

nodes are asymptotically uniformly distributed. Kadec’s theorem gives a criterion for the nodes (𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 

 

so that  𝑒𝑖𝑡 𝑚+𝜖0 
𝑥 

 𝑚+𝜖0 
 forms a Riesz basis for 𝐿2[−𝜋,𝜋].Generalizations of Kadec’s 1/4 theorem to higher 

dimensions are considered [13], and an asymptotic equivalence of two generalizations is given. We investigate 

an approximation  of the biorthogonal  functionals of Riesz bases. Additionally, we give a simple proof of a 

theorem of Levinson. 

 

II. PRELIMINARIES 
   We use the 𝑑-dimensional 𝐿2 Fourier transform 

ℱ( 𝑓 )(· )  =  𝑓 (𝜉 )𝑒−𝑖 ·,𝜉   

 

ℂ𝑑

 𝑑𝜉, 𝑓 ∈  𝐿2 ℂ 
𝑑 , 

where the inverse transform is given by 

ℱ−1( 𝑓 )(· )  =
1

 2𝜋 𝑑
 𝑓 (𝜉 )𝑒𝑖 ·,𝜉   

 

ℂ𝑑

 𝑑𝜉, 𝑓 ∈  𝐿2 ℂ 
𝑑 , 

the integral is actually a principal value where the limit is in the 𝐿2 sense. This map is an onto isomorphism 

from 𝐿2 ℂ
𝑑  to itself. 

Definition 2.1 .Given a bounded measurable set E with positive measure, we define 

𝑃𝑊𝐸  =  𝑓𝑗  ∈  𝐿2 ℂ
𝑑   𝑠𝑢𝑝𝑝 ℱ−1( 𝑓𝑗  )  ⊂  𝐸 . 

Functions in 𝑃𝑊𝐸  are said to be gradually series  bandlimited. 

Definition 2.2 .The function  sinc : ℂ → ℂ is defined by 𝑠𝑖𝑛𝑐(𝑥)  =  
𝑠𝑖𝑛(𝑥)

𝑥
 . We also define the multidimensional 

sinc function 
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SINC ∶ ℂ𝑑 → ℂ𝑑by SIN𝐶(𝑥) = sinc(𝑥1) · · · sinc(𝑥𝑑),𝑥 =  (𝑥1 , . . . , 𝑥𝑑). 
We recall some basic facts about 𝑃𝑊𝐸  :  

  (i) 𝑃𝑊𝐸  is a Hilbert space consisting of entire functions, though in this paper we only regard the functions as 

having real arguments. 

 (ii) In 𝑃𝑊𝐸  , 𝐿2 convergence implies uniform convergence. This is an easy consequence of the Cauchy–

Schwarz inequality.  

 (iii) The function 𝑠𝑖𝑛𝑐(𝜋(𝑥 −  𝑦)) is a reproducing kernel for 𝑃𝑊[−𝜋 ,𝜋] That is, if ∈ 𝑃𝑊[−𝜋 ,𝜋] , then we have 

                              𝑓𝑗  𝑡 

𝑗

=   𝑓𝑗   𝜏  𝑠𝑖𝑛𝑐𝜋 𝑡 – 𝜏  𝑑𝜏

𝑗

∞

−∞

 , 𝑡 ∈  ℂ .                            (1) 

   (iv) The WKS sampling theorem (see for example [69, p. 91]): If 𝑓 ∈ 𝑃𝑊[−𝜋 ,𝜋],then 

 𝑓𝑗  𝑡 

𝑗

 =   𝑓𝑗  ( 𝑚 + 𝜖0 ) 𝑠𝑖𝑛𝑐𝜋(𝑡 −  𝑚 + 𝜖0 )

𝑗 𝑚+𝜖0 ∈𝕫

, 𝑡 ∈  ℂ, 

where the sum converges in 𝑃𝑊[−𝜋 ,𝜋] , and hence uniformly. 

  If ( 𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 ∈ℕ is a Schauder basis for a Hilbert space 𝐻, then there exists a unique set of functions 

( 𝑓 𝑚+𝜖0 
∗ ) 𝑚+𝜖0 ∈ℕ

 (the biorthogonalsof  ( 𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 ∈ℕ

 such that   𝑓 𝑚+𝜖0 
 , 𝑓𝑚

∗  
 
  =  𝛿 𝑚+𝜖0 𝑚

. The 

biorthogonals also form a Schauder basis for 𝐻. Note that biorthogonality is preserved under a unitary 

transformation. 

Definition 2.3 . A sequence (𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 ⊂ 𝐻 such that the map 𝐿𝑒 𝑚+𝜖0 = 𝑓 𝑚+𝜖0 

  is an onto isomorphism 

is called a Riesz basis for 𝐻. The following definitions and facts concerning frames are found in [6, Section 4]. 

 Definition .𝟒 . A gradually series  frame for a separable Hilbert space 𝐻 is a sequence  (𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 

 ⊂  𝐻 

such that for some  𝐴 > 0 , 

𝐴   𝑓𝑗   
2

𝑗

≤     𝑓𝑗 , 𝑓 𝑚+𝜖0 
   

2

𝑗 𝑚+𝜖0 

≤  𝐴 + 𝜖1   𝑓𝑗   
2

𝑗

, ∀𝑓𝑗 ∈ 𝐻 , 𝜖1 > 0 .                   (2) 

The numbers A and  𝐴 + 𝜖1  in  (2) are called the lower and upper frame bounds. Let 𝐻 be  a Hilbert space with 

orthonormal basis (𝑒 𝑚+𝜖0 
) 𝑚+𝜖0 

. The following conditions are equivalent to (𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 

 ⊂  𝐻 being a 

gradually series  frame for 𝐻. 

  (i) The map 𝐿 ∶  𝐻 → 𝐻 defined by 𝐿𝑒 𝑚+𝜖0  =  𝑓 𝑚+𝜖0 
  is bounded linear and onto. This map is called the 

synthesis operator. 

  (ii) The map 𝐿∗ ∶  𝐻 → 𝐻 (the analysis operator) given by 𝑓𝑗 ↦   𝑓𝑗 , 𝑓 𝑚+𝜖0 
   𝑚+𝜖0 
𝑒 𝑚+𝜖0 

 is an isomorphic 

embedding. 

Given a gradually series  frame (𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 

  with synthesis operator 𝐿, the map 𝑆 =  𝐿𝐿∗ given by  

𝑆  𝑓𝑗𝑗  =    𝑓𝑗 , 𝑓 𝑚+𝜖0 
  𝑗 𝑓 𝑚+𝜖0 

  𝑚+𝜖0   is an onto isomorphism. 𝑆 is called the frame operator associated to 

the frame. It follows that S is positive and self-adjoint. The basic connection between frames and sampling 

theory of gradually series  bandlimited functions (more generally in a reproducing  kernel Hilbert space) is 

straightforward. If (𝑒𝑖𝑡 𝑚+𝜖0 
(·)) 𝑚+𝜖0  is a frame for 𝑓𝑗  ∈ 𝑃𝑊[−𝜋,𝜋] with frame operator 𝑆, and  𝑓𝑗  ∈ 𝑃𝑊[−𝜋 ,𝜋] , 

then 

 

𝑆  ℱ−1  𝑓𝑗    

𝑗

=    ℱ−1  𝑓𝑗   ,𝑓 𝑚+𝜖0 
  

𝑗 𝑚+𝜖0 

𝑓 𝑚+𝜖0 
  =   ℱ ℱ−1  𝑓𝑗     𝑡 𝑚+𝜖0 

  𝑓 𝑚+𝜖0 
 

𝑗 𝑚+𝜖0 

  

                                                                            =     𝑓𝑗  (𝑡 𝑚+𝜖0 
 ) 𝑓 𝑚+𝜖0 

 

𝑗 𝑚+𝜖0 

, 

implying  that   ℱ−1  𝑓𝑗   𝑗  =   𝑓𝑗  (𝑡 𝑚+𝜖0 
 ) 𝑆−1𝑓 𝑚+𝜖0 

 𝑗 𝑚+𝜖0 
,  so  that 

 𝑓𝑗𝑗  =   𝑓𝑗   𝑡 𝑚+𝜖0 
  ℱ−1 𝑆−1𝑓 𝑚+𝜖0 

  𝑗   𝑚+𝜖0 . Note that in the case when 𝑡 𝑚+𝜖0 
  =  𝑚 + 𝜖0 , we recover 

the WKS theorem . 

Definition 𝟐.𝟓 .A sequence (𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0  satisfying the second inequality in  (37) is called a Bessel 

sequence. 

Definition 2.6 .An exact frame is a frame which ceases to be one if any of its elements is removed. It can be 

shown that the notions of Riesz bases, exact frames, and unconditional Schauder bases coincide. 

Definition 2.7 .A subset 𝑆 of ℂ𝑑  is said to be uniformly separated if 

 inf
x, 1+𝜖2 ∈S,x≠ 1+𝜖2 

 𝑥 −  𝑦 2   >  0. 

Definition 𝟐.𝟖 .If 𝑆 =  (𝑥𝑘)𝑘  is a sequence of real numbers and  𝑓𝑗  is a function with 𝑆 in its domain, then 𝑓𝑆    

denotes the sequence  𝑓(𝑥𝑘)  𝑘 .  
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III. The multidimensional gradually series  over sampling  theorem 
In [7], Daubechies and DeVore derive the following formula 

 𝑓𝑗   𝑡 

𝑗

=  
1

 1 + 𝜖2 
  𝑓𝑗  

 𝑚 + 𝜖0 

 1 + 𝜖2 
 𝑔𝑗  

 𝑡 −
 𝑚 + 𝜖0 

 1 + 𝜖2 
 

𝑗 𝑚+𝜖0 ∈𝕫

, 𝑡 ∈  ℂ ,                         (3) 

where 𝑔𝑗  is infinitely smooth and decays rapidly. Thus over sampling  allows the representation of gradually 

series  bandlimited functions as combinations of integer translates of 𝑔𝑗  rather than the sinc function. In this 

sense  (3) is a generalization of the WKS theorem. The rapid decay of 𝑔𝑗  yields a certain stability in the 

recovery formula, given bounded perturbations in the sampled data [7].In this section we derive a 

multidimensional gradually series  version of  (3)(see[13]).Daubechies and DeVore regard ℱ−1(𝑓𝑗 ) as an 

element of  

  𝐿2[− 1 + 𝜖2 𝜋,  1 + 𝜖2 𝜋] for some  𝜖2  > 0. In their proof the obvious fact that 

  [−𝜋,𝜋]  ⊂  [− 1 + 𝜖2 𝜋,  1 + 𝜖2 𝜋] allows for the construction of the bump function ℱ−1(𝑔𝑗  
) ∈ 𝐶∞(ℂ) 

which is 1 on [−𝜋,𝜋] and 0 off [− 1 + 𝜖2 𝜋,  1 + 𝜖2 𝜋]. If their result is to be generalized to a sampling 

theorem for 𝑃𝑊𝐸  in higher dimensions, a suitable condition for 𝐸 allowing the existence of a bump function is 

necessary. If 𝐸 ⊂  ℂ𝑑 is chosen to be compact such that for all 𝜖2  > 0,𝐸 ⊂  𝑖𝑛𝑡( 1 + 𝜖2 𝐸), then Lemma 8.18 

in [9, p. 245], a 𝐶∞-version of the Urysohn lemma, implies the existence of a smooth bump function which is 1 

on 𝐸 and 0 off  1 + 𝜖2 𝐸 . It is to such regions that we generalize  (3) (see [13]) . 

Theorem 3.1 .Let 0 ∈  𝐸 ⊂  ℂ𝑑  be compact such that for all 𝜖2  > 0,𝐸 ⊂  𝑖𝑛𝑡( 1 + 𝜖2 𝐸). Choose 𝑆 =

 (𝑡 𝑚+𝜖0 ) 𝑚+𝜖0 ∈ℕ ⊂  ℂ𝑑  such that ( 𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 ∈ℕ, defined by  𝑓 𝑚+𝜖0 

 (· )  =  𝑒𝑖 ·,𝑡 𝑚+𝜖0 
 , is a gradually 

series  frame for 𝐿2(𝐸) with frame operator 𝑆. Let 𝜖5 > 0 with ℱ−1(𝑔𝑗 ) ∶ ℂ𝑑  → ℂ,ℱ−1(𝑔𝑗 ) ∈ 𝐶∞  where 

ℱ−1(𝑔𝑗 )|𝐸  =  1 and ℱ−1(𝑔𝑗 )|( 1+𝜖2  𝐸)𝑐  =  0. If 𝜖2 > 𝜖5 > 0  and  𝑔𝑗 ∈ 𝑃𝑊𝐸  , then 

 𝑓𝑗 (𝑡)

𝑗

 =  
1

 1 + 𝜖2 
𝑑
    𝐵𝑘 𝑚+𝜖0 

 𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
 

 𝑚+𝜖0 ∈ℕ

 𝑔𝑗  𝑡 −  
𝑡𝑘

 1 + 𝜖2 
 

𝑗𝑘∈ℕ

, 𝑡 ∈  ℂ𝑑 ,            (4) 

where 𝐵𝑘 𝑚+𝜖0 
 =   𝑆−1 𝑓 𝑚+𝜖0 

 , 𝑆−1 𝑓𝑘  𝐸  . Convergence of the sum is in 𝐿2(ℂ𝑑), hence also uniform. Further, 

the map 𝐵 ∶  ℓ2(𝑁) → ℓ2(𝑁) defined by (𝑦𝑘)𝑘∈ℕ  ⟼     𝐵𝑘 𝑚+𝜖0 
 𝑦 𝑚+𝜖0  𝑚+𝜖0 ∈ℕ

 
𝑘∈ℕ

 is bounded linear, and 

is an onto isomorphism if and only if  ( 𝑓 𝑚+𝜖0 
 ) 𝑚+𝜖0 ∈ℕ is a Riesz basis for 𝐿2(𝐸). 

Proof .Define 𝑓 1+𝜖2 , 𝑚+𝜖0 
(· ) = 𝑓 𝑚+𝜖0 

 
·

 1+𝜖2 
  . Note that ( 𝑓 1+𝜖2 , 𝑚+𝜖0 

) 𝑚+𝜖0 
 is a gradually series  frame 

for  𝐿2  1 + 𝜖2 𝐸  with frame operator  𝑆 1+𝜖2  . 

Step 1: We show that 

 𝑓𝑗
𝑗

 =   𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  ℱ  𝑆 1+𝜖2 

−1 𝑓 1+𝜖2 , 𝑚+𝜖0  

  

 
 ℱ−1(𝑔𝑗 ) 

𝑗 𝑚+𝜖0 

, 𝑓𝑗 ∈  𝑃𝑊𝐸  .        (5) 

We know supp(ℱ−1( 𝑓𝑗  ))  ⊂ 𝐸 ⊂  1 + 𝜖2 𝐸, so we may work with ℱ−1( 𝑓𝑗  ) via its frame decomposition .  

We have 

 ℱ−1 𝑓𝑗   

𝑗

=  𝑆 1+𝜖2 
−1 𝑆 1+𝜖2 

  ℱ−1  𝑓𝑗    

𝑗

=    ℱ−1  𝑓𝑗   , 𝑓 1+𝜖2 , 𝑚+𝜖0 
 

𝑗  1+𝜖2 𝐸
 𝑚+𝜖0 

 𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0 , 

𝑜𝑛  1 + 𝜖2 𝐸. This yields 

 ℱ−1 𝑓𝑗   

𝑗

 =    ℱ−1( 𝑓𝑗  ), 𝑓 1+𝜖2 , 𝑚+𝜖0 
  1+𝜖2 𝐸

𝑗 𝑚+𝜖0 

 𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0 

 ℱ−1(𝑔𝑗 ), 𝑜𝑛 ℂ𝑑 , 

since suppℱ(𝑔𝑗 )  ⊂   1 + 𝜖2 𝐸. Taking Fourier transforms we obtain 

 𝑓𝑗
𝑗

=    ℱ−1  𝑓𝑗   ,𝑓 1+𝜖2 , 𝑚+𝜖0 
  1+𝜖2 𝐸

𝑗 𝑚+𝜖0 

ℱ  𝑆 1+𝜖2 
−1  ℱ−1 𝑔𝑗   , 𝑜𝑛 ℂ𝑑 .                      (6) 

Now 

  ℱ−1  𝑓𝑗   , 𝑓 1+𝜖2 , 𝑚+𝜖0 
  1+𝜖2 𝐸

𝑗

=   ℱ−1  𝑓𝑗   (𝜉 )𝑒
−𝑖 𝜉 ,

𝑡 𝑚+𝜖0 

 1+𝜖2 
 

𝑗

 

 1+𝜖2 𝐸

𝑑𝜉 =   𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
 

𝑗

 

which, when substituted into  (6), yields (5). 

Step 2: We show that  

 𝑓𝑗  ·  

𝑗

=   𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
 

𝑗 𝑚+𝜖0 

   𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0  , 𝑆 1+𝜖2 

−1  𝑓 1+𝜖2 ,𝑘
  1+𝜖2 𝐸  𝑔𝑗  · −

𝑡𝑘
 1 + 𝜖2 

 

𝑘

 , (7) 
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where convergence is in 𝐿2.We compute ℱ[(𝑆 𝜖2+1 
−1  𝑓 𝜖2+1 , 𝑚+𝜖0 )ℱ

−1(𝑔𝑗 )]. For  ∈  𝐿2( 1 + 𝜖2 𝐸) we have 

 = 𝑆 1+𝜖2  𝑆 1+𝜖2 
−1  =   𝑆 1+𝜖2 

−1 , 𝑓 1+𝜖2 ,𝑘
  1+𝜖2 𝐸 𝑓 1+𝜖2 ,𝑘

𝑘

=    ,𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑘

 𝑓 1+𝜖2 ,𝑘 . 

Letting   =  𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0 

, 

𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0 

 =   𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 , 𝑚+𝜖0 

 , 𝑆 1+𝜖2 
−1  𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑘

 𝑓 1+𝜖2 ,𝑘
. 

This gives 

 ℱ  𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0  ℱ

−1 𝑔𝑗    ·  

𝑗

 

 =    𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0 

, 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑗𝑘

ℱ 𝑓 1+𝜖2 ,𝑘
ℱ−1 𝑔𝑗    ·                               

    =   𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0 

 , 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑘

  𝑒
𝑖 𝜉 ,

𝑡𝑘
 1+𝜖2 

 
ℱ−1(𝑔𝑗 )(𝜉 )𝑒−𝑖 𝜉 ,. 

𝑗

 

 1+𝜖2 𝐸

𝑑𝜉     

      =   𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0  

, 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑘

  ℱ−1(𝑔𝑗 )(𝜉 )𝑒
−𝑖 ·− 

𝑡𝑘
 1+𝜖2 

 ,𝜉 

𝑗

 

 1+𝜖2 𝐸

𝑑𝜉          

=    𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0  

, 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸

𝑗𝑘

𝑔𝑗  · −
𝑡𝑘

 1 + 𝜖2 
  ,                                       

so (7) follows from (5). 

Step 3: We show that 

 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0  , 𝑆 1+𝜖2 

−1 𝑓 1+𝜖2 ,𝑘
  1+𝜖2 𝐸 =  

1

 1 + 𝜖2 
𝑑
 𝑆−1𝑓 𝑚+𝜖0 , 𝑆

−1𝑓𝑘  𝐸  , for   𝜖0 > 0 , 𝑘 ∈  ℕ. (8) 

First we show (𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0 

)(· )  =  
1

 1+𝜖2 𝑑
 (𝑆 1+𝜖2 

−1 𝑓 𝑚+𝜖0 
)  

·

 1+𝜖2 
  , or equivalently that  

𝑓 1+𝜖2 , 𝑚+𝜖0 
 =  

1

 1+𝜖2 𝑑
𝑆 1+𝜖2 

 (𝑆−1𝑓 𝑚+𝜖0 
)  

·

 1+𝜖2 
  .We have for any 𝑔𝑗  ∈  𝐿2( 1 + 𝜖2 𝐸), 

   𝑔𝑗 , 𝑓 1+𝜖2 ,𝑘
  1+𝜖2 𝐸

𝑗

 =   𝑔𝑗  𝜉  𝑒
−𝑖 

𝜉
 1+𝜖2 

 ,𝑡𝑘  

𝑗

 

 1+𝜖2 𝐸

𝑑𝜉 

                        =  1 + 𝜖2 
𝑑   𝑔𝑗   1 + 𝜖2 𝑥 𝑒

−𝑖 𝑥 ,𝑡𝑘  

𝑗

 

𝐸

 𝑑𝑥  =   1 + 𝜖2 
𝑑   𝑔𝑗   1 + 𝜖2 (·) , 𝑓𝑘  𝐸

𝑗

.     

By definition of the frame operator 𝑆 1+𝜖2 
, 𝑆 1+𝜖2 

𝑔𝑗  =   𝑔𝑗 , 𝑓 1+𝜖2 ,𝑘
  1+𝜖2 𝐸𝑘∈ℕ  𝑓 1+𝜖2 ,𝑘

 , which then 

becomes   𝑆 1+𝜖2 
𝑔𝑗𝑗 =   1 + 𝜖2 

𝑑    𝑔𝑗   1 + 𝜖2 (·) , 𝑓𝑘  𝐸  𝑓 1+𝜖2 ,𝑘𝑗𝑘  .  Substituting 

  𝑔𝑗  =  
1

 1+𝜖2 
𝑑

(𝑆−1𝑓 𝑚+𝜖0 
)  

·

 1+𝜖2 
  into the equation above we obtain 

1

 1 + 𝜖2 
𝑑
𝑆 1+𝜖2 

  𝑆−1𝑓 𝑚+𝜖0 
  

·

 1 + 𝜖2 
  =   𝑆−1𝑓 𝑚+𝜖0 

, 𝑓𝑘  𝐸  𝑓 1+𝜖2 ,𝑘

𝑘

 

                                                                 =  𝑆 𝑆−1𝑓 𝑚+𝜖0 
   

·

 1 + 𝜖2 
 =  𝑓 1+𝜖2 , 𝑚+𝜖0 

.     

We now compute the desired inner product: 

 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 , 𝑚+𝜖0 

, 𝑆 1+𝜖2 
−1 𝑓 1+𝜖2 ,𝑘

  1+𝜖2 𝐸
 

           =  
1

 1 + 𝜖2 
2𝑑

  𝑆−1𝑓 𝑚+𝜖0   
𝑥

 1 + 𝜖2 
  𝑆−1𝑓𝑘  

𝑥

 1 + 𝜖2 
 

                        
 

 1+𝜖2 𝐸

𝑑𝑥                                  

      =  
 1 + 𝜖2 

𝑑

 1 + 𝜖2 
2𝑑
  𝑆−1𝑓 𝑚+𝜖0 

 (𝑥) 𝑆−1𝑓𝑘 (𝑥)              

 

𝐸

𝑑𝑥 =  
1

 1 + 𝜖2 
𝑑
 𝑆−1𝑓 𝑚+𝜖0 

, 𝑆−1𝑓𝑘  𝐸  . 

Note that  (7) becomes 

 𝑓𝑗 (· )

𝑗

 =  
1

 1 + 𝜖2 
𝑑

  𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
 

𝑗 𝑚+𝜖0 

   𝑆−1𝑓 𝑚+𝜖0 
, 𝑆−1𝑓𝑘  𝑔𝑗  · −

𝑡𝑘
 1 + 𝜖2 

 

𝑘

 .                  (9) 

Step4: The map 𝑉 ∶ ℓ2(ℕ) ↦ ℓ2(ℕ) given  by  𝑥 =  (𝑥𝑘)𝑘∈ℕ  ↦    𝐵𝑘 𝑚+𝜖0 
𝑥 𝑚+𝜖0  𝑚+𝜖0  

 
𝑘∈ℕ

 =  𝐵𝑥 is 

bounded linear and self-adjoint. Let (𝑑𝑘)𝑘∈ℕ be the standard basis for ℓ2(ℕ), and let (𝑒𝑘)𝑘∈ℕ be an orthonormal 

basis for 𝐿2(𝐸). Then 
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𝑉𝑑𝑗  =   𝐵𝑘𝑗  𝑘∈ℕ
=  𝐵𝑘𝑗 𝑑𝑘

𝑘

 =   𝑆−1𝑓𝑗 , 𝑆−1𝑓𝑘  𝑑𝑘
𝑘

=   𝐿∗ 𝑆−1 2𝐿𝑒𝑗  , 𝑒𝑘  𝑑𝑘
𝑘

, 

where 𝐿 is the synthesis 𝑓 operator, i.e., 𝑆 =  𝐿𝐿∗. Define 𝜑 ∶  ℓ2
 (ℕ)  ↦  𝐿2(𝐸) by 𝜑(𝑑𝑘)  =  𝑒𝑘 , 𝑘 ∈  ℕ. 

Clearly 𝜑 is unitary. It follows that 𝑉 =  𝜑−1𝐿∗ 𝑆−1 2𝐿𝜑, which concludes Step 4. From here on we identify 𝑉 

with 𝐵. Clearly 𝐵 is an onto isomorphism if and only if 𝐿 and 𝐿∗ are both onto, i.e., if and only if the map 

𝐿𝑒 𝑚+𝜖0 
 =  𝑓 𝑚+𝜖0 

 is an onto isomorphism. 

Step 5: Verification of  (4). Recalling Definition 3.8, 

𝑓𝑆𝑗/ 1+𝜖2 
 =    𝑓𝑗  

𝑡 𝑚+𝜖0 

 1+𝜖2 
   

 𝑚+𝜖0 ∈ℕ

 , for each 𝑡 ∈  ℂ𝑑 , let 𝑔 1+𝜖2 𝑗   
 𝑡 =  𝑔𝑗  𝑡 −

𝑡 𝑚+𝜖0 

 1+𝜖2 
   

 𝑚+𝜖0 ∈ℕ
. Noting 

that 𝑓𝑗  
.

 1+𝜖2 
  ,𝑔𝑗  𝑡 −  

.

 1+𝜖2 
   ∈  𝐿2( 1 + 𝜖2 𝐸),  and recalling that ( 𝑓 1+𝜖2 , 𝑚+𝜖0 

) 𝑚+𝜖0 
 is a frame for 

𝐿2( 1 + 𝜖2 𝐸), we have 

   𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
   

2

𝑗 𝑚+𝜖0 

=     ℱ−1( 𝑓𝑗  ), 𝑓 1+𝜖2 , 𝑚+𝜖0 
  1+𝜖2 𝐸

 
2

𝑗  𝑚+𝜖0 

 ≤ 𝐴 1+𝜖2 
  ℱ−1( 𝑓𝑗  ) 

2

𝑗

, (10) 

and 

   𝑔𝑗  𝑡 −
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  

2

𝑗 𝑚+𝜖0 

=     ℱ−1  𝑔𝑗  𝑡 −  
.

 1 + 𝜖2 
    , 𝑓 1+𝜖2 , 𝑚+𝜖0 

  1+𝜖2 𝐸 

2

𝑗

   

                            ≤  𝐴 1+𝜖2 
  ℱ−1  𝑔𝑗  𝑡 −  

.

 1 + 𝜖2 
     

2

𝑗

       .     

Note that  (9) becomes 

 𝑓𝑗  𝑡  

𝑗

=
1

 1 + 𝜖2 
𝑑

  𝑓𝑗  
𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  

𝑗 𝑚+𝜖0 

   𝐵𝑘 𝑚+𝜖0 
 𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗𝑘

  

   =  
1

 1 + 𝜖2 
𝑑
  𝑓𝑗  

𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  

𝑗 𝑚+𝜖0 

    𝐵 𝑚+𝜖0 𝑘
 𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 
                      

𝑗𝑘

  

                                              

                                                      

 =  
1

 1 + 𝜖2 
𝑑

    𝑓𝑆/ 1+𝜖2 
 
 𝑚+𝜖0 

 𝐵𝑔𝑗  1+𝜖2 
 𝑡                

 𝑚+𝜖0 𝑗 𝑚+𝜖0 

=  
1

 1 + 𝜖2 
𝑑
  𝑓𝑗 𝑆

 1+𝜖2 
,𝐵𝑔𝑗  1+𝜖2 

 𝑡                

𝑗

       

=  
1

 1 + 𝜖2 
𝑑
  𝐵𝑓𝑆/ 1+𝜖2  ,𝑔𝑗  1+𝜖2 

(𝑡)               

𝑗

                                                                                                             

=  
1

 1 + 𝜖2 
𝑑
   𝐵𝑓𝑆/ 1+𝜖2 

 
𝑘
𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗𝑘

                                                                                           

=  
1

 1 + 𝜖2 
𝑑
    𝐵𝑘 𝑚+𝜖0 𝑓𝑗  

𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  

 𝑚+𝜖0 ∈ℕ

 𝑔𝑗  𝑡 −
𝑡𝑘

 1 + 𝜖2 
 

𝑗𝑘∈ℕ

,                                                      

which proves (4). 

Step 6: We verify that convergence in  (4) is in 𝐿2(ℂ) (hence uniform). Define 

𝑓 𝑚+𝜖0 
(𝑡)  =  

1

 1 + 𝜖2 
𝑑

   𝐵𝑓𝑆/ 1+𝜖2 
 
𝑘
𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗1≤𝑘≤ 𝑚+𝜖0 

 

and 

𝑓𝑚 , 𝑚+𝜖0 
 𝑡 =  

1

 1 + 𝜖2 
𝑑

   𝐵𝑓𝑆/ 1+𝜖2 
 
𝑘
𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗𝑚≤𝑘≤ 𝑚+𝜖0 

 . 

Then 

 ℱ−1 𝑓𝑚 , 𝑚+𝜖0   (𝜉 )  =  
1

 1 + 𝜖2 
𝑑

   𝐵𝑓𝑆/ 1+𝜖2  𝑘
ℱ−1  𝑔𝑗  .−

𝑡 𝑚+𝜖0 

 1 + 𝜖2 
  

𝑗

       

𝑚≤𝑘≤ 𝑚+𝜖0 

 

                                   =  
1

 1 + 𝜖2 
𝑑

   𝐵𝑓𝑆/ 1+𝜖2 
 
𝑘
ℱ−1(𝑔𝑗 )(𝜉 )𝑒

𝑖 𝜉 ,
𝑡𝑘

 1+𝜖2 
 

𝑗𝑚≤𝑘≤ 𝑚+𝜖0 

, 

so 
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  ℱ−1 𝑓𝑚 , 𝑚+𝜖0 
   

2

2
=  

1

 1 + 𝜖2 
𝑑

   ℱ−1(𝑔𝑗 )(𝜉 ) 
2

 

𝑗

   𝐵𝑓𝑆/ 1+𝜖2 
 
𝑘
𝑒
𝑖 𝜉 ,

𝑡𝑘
 1+𝜖2 

 

𝑚≤𝑘≤ 𝑚+𝜖0 

 

2 

 1+𝜖2 𝐸

𝑑𝜉 

                             ≤
1

 1 + 𝜖2 
𝑑
   𝐵𝑓𝑆/ 1+𝜖2 

 
𝑘
𝑓 1+𝜖2 ,𝑘

𝑚≤𝑘≤ 𝑚+𝜖0 

 

2

2

.                                  

 If   𝑚+𝜖0 
 
 𝑚+𝜖0 

 is a orthonormal basis for 𝐿2( 1 + 𝜖2 𝐸), then the map 𝑇𝐾  =  𝑓 1+𝜖2 ,𝑘
 (the synthesis 

operator) is bounded linear, so 

  ℱ−1 𝑓𝑚 , 𝑚+𝜖0    2

2
≤

1

 1 + 𝜖2 
𝑑
 𝑇    𝐵𝑓𝑆/ 1+𝜖2  𝑘

𝐾
𝑚≤𝑘≤ 𝑚+𝜖0 

  

2

2

                                     

     ≤
1

 1 + 𝜖2 
𝑑
 𝑇 2    𝐵𝑓𝑆/ 1+𝜖2  𝑘

 
2

𝑚≤𝑘≤ 𝑚+𝜖0 

.           

But 𝐵𝑓𝑆/ 1+𝜖2 ∈  ℓ2(ℕ), so   ℱ−1 𝑓𝑚 , 𝑚+𝜖0    2  
 → 0 as 𝑚 → ∞, 𝜖0 > 0. As  ℱ−1 is an onto isomorphism, we 

have  𝑓𝑚 , 𝑚+𝜖0  → 0, implying that  𝑓 − 𝑓 𝑚+𝜖0  → 0 as 𝑚 → ∞. Note that (3) is conveniently written as 

 𝑓𝑗  𝑡  

𝑗

=  
1

 1 + 𝜖2 
𝑑
   𝐵𝑓𝑆/ 1+𝜖2 

 
𝑘
𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗𝑘

, 𝑡 ∈  ℂ𝑑 .                               (11) 

Remark  .There is a geometric characterization of sets 𝐸 ⊂ ℂ𝑑  such that 𝐸 ⊂  𝑖𝑛𝑡( 1 + 𝜖2 𝐸) for all 𝜖2 >  0. 
Intuitively, 𝐸 must be a continuous radial stretching of the closed unit ball”. This is precisely formulated in the 

following proposition . 

Proposition 3.2 . If  0 ∈  𝐸 ⊂  ℂ𝑑  is compact, then the following are equivalent: 

  (i) 𝐸 ⊂  𝑖𝑛𝑡( 1 + 𝜖2 𝐸) for all 𝜖2 >  0. 
  (ii) There exists a continuous map 𝜑 ∶  𝑆𝑑−1 → (0,∞) such that  

 𝐸 =   𝑡𝑦𝜑(𝑦) | 𝑦 ∈ 𝑆𝑑−1 , 𝑡 ∈  [0, 1] . The following is a simplified version of Theorem 3.1 , which is proven 

in a similar fashion (see [13] ): 
Theorem 3.3 .Choose (𝑡 𝑚+𝜖0 

) 𝑚+𝜖0 ∈ℕ
⊂  ℂ𝑑  such that (𝑓 𝑚+𝜖0 

) 𝑚+𝜖0 ∈ℕ
, defined by 

 𝑓 𝑚+𝜖0 
(· ) =

1

(2𝜋)𝑑/2
 𝑒𝑖 ·,𝑡 𝑚+𝜖0 

 , is a frame for 𝐿2 [−𝜋,𝜋]𝑑 . If  𝑓 ∈ 𝑃𝑊𝐸  ,then 

 𝑓𝑗  𝑡  

𝑗

=     𝐵𝑘 𝑚+𝜖0 
𝑓𝑗   𝑡 𝑚+𝜖0 

 

𝑗 𝑚+𝜖0 ∈ℕ

 𝑆𝐼𝑁𝐶 𝜋 𝑡 – 𝑡𝑘  

𝑘∈ℕ

, 𝑡 ∈ ℂ𝑑 .                      (12) 

The matrix 𝐵 and the convergence of the sum are as in Theorem 3.1.Then (4) generalizes  (12) in the same way 

that  (3) generalizes the WKS equation. We can write  (12) as 

 𝑓𝑗  𝑡  

𝑗

 =    𝐵𝑓𝑆𝑗   
𝑘
𝑆𝐼𝑁𝐶 𝜋 𝑡 – 𝑡𝑘  

 

𝑗𝑘∈ℕ

.                                                                   (13) 

    The preceding result is similar in spirit to Theorem 1.9 in [4, p. 19].Gradually series  frames 

for𝐿2(𝐸) satisfying the conditions in Theorems 3.9 and 5.2 occur in abundance. The following result is due to 

Beurling in  

[5, see Theorem 1, Theorem 2, and (20)]. 

Theorem 3.4 .Let 𝛬 ⊂  ℂ𝑑  be countable such that 

𝑟 𝛬 =
1

2
inf

 1+𝜖2 ,𝜇∈𝛬, 1+𝜖2 ≠𝜇
   1 + 𝜖2  – 𝜇 2 > 0 and  ℂ 𝛬 = sup

𝜉∈ℂ𝑑
 inf
 1+𝜖2 ∈𝛬

   1 + 𝜖2  − 𝜇 2 <  
𝜋

2
. 

 If 𝐸 is a subset of the closed unit ball in ℂ𝑑  and E has positive measure, then {𝑒𝑖 ·, 1+𝜖2  |  1 + 𝜖2  ∈  𝛬} is a 

gradually series  frame for 𝐿2(𝐸).  

 

IV. REMARKS REGARDING THE STABILITY OF THEOREM 3.1  
A desirable trait in a recovery formula is stability given error in the sampled data (see [13]). Suppose we have 

sample values 𝑓𝑗  𝑚+𝜖0 
= 𝑓𝑗  

 𝑚+𝜖0 

 1+𝜖2 
  + 𝜖 𝑚+𝜖0 

 where 𝑠𝑢𝑝 𝑚+𝜖0 
 𝜖 𝑚+𝜖0 

 =  𝜖.  

If in  (3) we replace 𝑓  
 𝑚+𝜖0 

 1+𝜖2 
  by 𝑓  𝑚+𝜖0 

, and call the resulting expression 𝑓  , then we have 

  𝑓𝑗  (𝑡) −  𝑓𝑗  (𝑡) 

𝑗

≤
𝜖

 1 + 𝜖2 
   𝑔𝑗  𝑡 −  

 𝑚 + 𝜖0 

 1 + 𝜖2 
  

𝑗 𝑚+𝜖0 ∈𝕫

≤
𝜖

 1 + 𝜖2 
  𝑔𝑗

′ 
𝐿1

𝑗

+  𝜖 𝑔𝑗
   

𝐿1
𝑗

. 
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It follows that  (3) is certainly stable under ℓ∞  perturbations in the data, while the WKS sampling theorem is 

not. For a more detailed discussion see [7]. Such a stability result is not immediately forthcoming for  (4), as the 

following example illustrates. Restricting to 𝑑 =  1, let (𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 satisfy 𝑡2  =  𝐷 ∉  𝕫, and 𝑡 𝑚+𝜖0 
 =

  𝑚 + 𝜖0  for  𝑚 + 𝜖0  ≠ 0. The forthcoming discussion in Section 5 shows that (𝑓 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 is a Riesz 

basis for 𝐿2[−𝜋,𝜋]. 

Note that when (𝑓 𝑚+𝜖0 
) 𝑚+𝜖0 

 is a Riesz basis, the sequence  𝑆−1𝑓 𝑚+𝜖0  
 
 𝑚+𝜖0 

is its biorthogonal sequence. 

The matrix 𝐵 associated to this basis is computed as follows. The biorthogonal functions (𝐺 𝑚+𝜖0 ) 𝑚+𝜖0 ∈𝕫  for  

(𝑠𝑖𝑛𝑐(𝜋(·  − 𝑚 + 𝜖0 ))) 𝑚+𝜖0 ∈𝕫
   are   𝐺 𝑚+𝜖0 

(𝑡)  =  
 −1  𝑚+𝜖0  𝑚+𝜖0  𝑡  − 𝐷 𝑠𝑖𝑛𝑐  𝜋𝑡  

  𝑚+𝜖0 −𝐷  𝑡− 𝑚+𝜖0  
,  𝑚 + 𝜖0  ≠  0, 

And  𝐺0(𝑡) =
𝑠𝑖𝑛𝑐 (𝜋𝑡 )

𝑠𝑖𝑛𝑐 (𝜋  𝐷)
. That these functions are in 𝑃𝑊[−𝜋,𝜋] is verified by applying the Paley–Wiener theorem 

[1, p. 85], and the biorthogonality condition is verified by applying  (1). Again using  (1), we obtain 

(i)   𝐵𝑚0  =   𝐺0 ,𝐺𝑚   =  
𝐷(−1)𝑚

𝑠𝑖𝑛𝑐 (𝜋  𝐷)(𝑚  − 𝐷)
,𝑚 ≠  0,                      

(ii)   𝐵00  =   𝐺0 ,𝐺0  =
 1

𝑠𝑖𝑛𝑐2(𝜋  𝐷)
 ,                                                         

(iii)   𝐵𝑚 𝑚+𝜖0 
 =  𝐺 𝑚+𝜖0 

,𝐺𝑚  =  𝛿 𝑚+𝜖0 𝑚
 +  

𝐷2(−1) 𝑚+𝜖0 +𝑚

( 𝑚+𝜖0  − 𝐷)(𝑚  − 𝐷)
, 𝑒𝑙𝑠𝑒.     

Note that the rows of 𝐵 are not in ℓ1, so that as an operator acting on ℓ∞ , 𝐵 does not act boundedly. 

Consequently, the equation 

    𝑓𝑗  𝑡 

𝑗

=  
1

 1 + 𝜖2 
 
   𝐵𝑓 𝑆/ 1+𝜖2  𝑘

𝑔𝑗  𝑡 −
𝑡𝑘

 1 + 𝜖2 
 

𝑗𝑘

                                                            (14) 

is not defined for all perturbed sequences 𝑓 𝑆/ 1+𝜖2 
  where 

  𝑓 𝑆/ 1+𝜖2 
 
 𝑚+𝜖0 

=  𝑓𝑆/ 1+𝜖2 
 
 𝑚+𝜖0 

+𝜖 𝑚+𝜖0 
 where sup 𝑚+𝜖0 

 𝜖 𝑚+𝜖0 
 =  𝜖  .  Despite the above failure, the 

following shows that there is some advantage of  (4) over  (2).If  𝑓 𝑆/ 1+𝜖2 
 is some perturbation of 𝑓𝑆/ 1+𝜖2 

 such 

that  𝐵𝑓 𝑆/ 1+𝜖2 
 −  𝐵𝑓𝑆/ 1+𝜖2 

 
∞
≤ 𝜖 , then 

 sup
𝜉∈ℂ𝑑

  𝑓𝑗  (𝑡) −  𝑓𝑗  (𝑡) 

𝑗

= sup
𝜉∈ℂ𝑑

  
1

 1 + 𝜖2 
   𝐵 𝑓𝑆/ 1+𝜖2  –𝑓

 
𝑆/ 1+𝜖2   

𝑘
𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

 

𝑗𝑘

      

      ≤ 𝜖sup
𝜉∈ℂ𝑑

1

 1 + 𝜖2 
   𝑔𝑗  𝑡 −

𝑡𝑘
 1 + 𝜖2 

  

𝑗𝑘

≤ 𝑀                                                   (15) 

 

V. RESTRICTION OF THE SAMPLING THEOREM TO THE CASE WHERE THE 

EXPONENTIAL GRADUATE FRAME IS A RIESZ BASIS 
From here on (see [13]), we focus on the case where (𝑡 𝑚+𝜖0 

) 𝑚+𝜖0 ∈ℕ
 is an ℓ∞  perturbation of the 

lattice 𝕫𝑑 , and (𝑓 𝑚+𝜖0 ) 𝑚+𝜖0 ∈ℕ is a Riesz basis for 𝐿2[−𝜋,𝜋]𝑑 . In this case, under the additional constraint 

that the sample nodes are asymptotically the integer lattice, the following theorem gives a computationally 

feasible version of  (4). The summands in  (4) involves an infinite invertible matrix 𝐵, though under the 

constraints mentioned above, we show that 𝐵 can be replaced by a related finite-rank operator which can be  

computed concretely. Precisely, one has the following (see [13]). 

Theorem 𝟓.𝟏 .Let ( 𝑚 + 𝜖0 𝑘)𝑘∈ℕ be an enumeration of 𝕫𝑑 , and  𝑆 = (𝑡𝑘)𝑘∈ℕ ⊂ ℂ𝑑  such that  lim𝑘→∞  𝑚 +
𝜖0𝑘 −𝑡𝑘∞= 0 .                                                 

Define  𝑒𝑘 ,𝑓𝑘 ∶  ℂ𝑑  → ℂ by 𝑒𝑘(𝑥)  =  
1

(2𝜋)𝑑/2
 𝑒𝑖  𝑚+𝜖0 𝑘  ,   𝑥  and   

1

(2𝜋)𝑑/2
 𝑒𝑖 𝑡𝑘  ,   𝑥 ,  and let  𝑘 𝑘  be the standard 

basis for ℓ2(ℕ). Let  𝑃𝑙 : ℓ2(ℕ) → ℓ2(ℕ) be the orthogonal projection onto span{1 , . . . , 𝑙}. If (𝑓𝑘 )𝑘∈ℕ is a Riesz 

basis for 𝐿2[−𝜋,𝜋]𝑑 , then for all 𝑓 ∈  𝑃𝑊[−𝜋 ,𝜋]𝑑 , we have 

 𝑓𝑗 (𝑡)

𝑗

 = lim
𝑙→∞

1

 1 + 𝜖2 
𝑑
   𝑃𝑙𝐵

−1  𝑃𝑙 
−1  𝑓 𝑆

 1+𝜖2 
 
𝑘

𝑙

𝑘=1

 𝑔𝑗  𝑡 −
𝑡𝑘

 1 + 𝜖2 
 

𝑗

, 𝑡 ∈  ℂ𝑑 ,                       (16) 

where convergence is in L2 and uniform. Furthermore, 

 𝑃𝑙𝐵
−1  𝑃𝑙  𝑚+𝜖0 𝑚

=  
𝑠𝑖𝑛𝑐𝜋(𝑡 𝑚+𝜖0 ,1

 − 𝑡𝑚 ,1)  · · ·   𝑠𝑖𝑛𝑐𝜋(𝑡 𝑚+𝜖0 ,𝑑
− 𝑡𝑚 ,𝑑), 1 ≤  𝑚 + 𝜖0 ,𝑚 ≤ 𝑙,

0,                                                                                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
  

Convergence of the sum is in 𝐿2 and also uniform. 

 The matrix 𝑃𝑙𝐵
−1  𝑃𝑙 is clearly not invertible as an operator on ℓ2, and it should be interpreted as the inverse of 

an 𝑙 × 𝑙 matrix acting on the first  𝑙  coordinates of 𝑓𝑆/ 1+𝜖2  . The following version of Theorem 5.1 avoids over 

sampling . Its proof is similar to that of Theorem 5.1. 
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Theorem 5.2 .Under the hypotheses of Theorem 5.1 , 

        𝑓𝑗 (𝑡)

𝑗

=  lim
𝑙→∞

    𝑃𝑙𝐵
−1  𝑃𝑙 

−1  𝑓𝑆 𝑘

𝑙

𝑘=1

 𝑆𝐼𝑁𝐶 𝑡 − 𝑡𝑘 , 𝑡 ∈  ℂ𝑑 ,                           (17) 

where convergence of the sum is both L2 and uniform. The following lemma forms the basis of the proof of the 

preceding theorems, as well as the other results in the paper (see [13]) . 

Lemma 5.3 .Let ( 𝑚 + 𝜖0 𝑘)𝑘∈ℕ be an enumeration of 𝕫𝑑 , and let (𝑡𝑘)𝑘∈ℕ ⊂  ℂ𝑑 . Define  

𝑒𝑘 ,𝑓𝑘  ∶ ℂ𝑑 → 𝕔   by  𝑒𝑘 𝑥 =
1

 2𝜋 
𝑑
2

 𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥  and 𝑓𝑘  𝑥 =
1

 2𝜋 
𝑑
2

 𝑒 𝑖 𝑡𝑘 ,𝑥 . Then for any 𝜖4 > 𝜖3 ≥ 0,  and any 

finite sequence (𝑎𝑘)𝑘= 1+𝜖3 
 1+𝜖4  ,  we have 

   
𝑎𝑘

 2𝜋 
𝑑
2

 𝑒 𝑖  · , 𝑚+𝜖0 𝑘  −  
𝑎𝑘

 2𝜋 
𝑑
2

 𝑒 𝑖  · ,𝑡𝑘   

 1+𝜖4 

𝑘= 1+𝜖3 

 

2

                                                  

                                    ≤  𝑒𝜋𝑑 (𝑠𝑢𝑝  1+𝜖3 ≤𝑘≤ 1+𝜖4 
  𝑚+𝜖0 𝑘  − 𝑡𝑘 ∞ ) − 1   |𝑎𝑘 |2

 1+𝜖4 

𝑘= 1+𝜖3 

 

1/2

.      18  

Proof .Let 𝛿𝑘  = 𝑡𝑘  −  𝑚 + 𝜖0 𝑘  where 𝛿𝑘  =  (𝛿𝑘1
, . . . , 𝛿𝑘𝑑 ). Then 

𝜑 1+𝜖3 , 1+𝜖4 
 𝑥 =  

𝑎𝑘

 2𝜋 
𝑑
2

 𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥 , 𝑒𝑖 𝑡𝑘 ,𝑥  

 1+𝜖4 

𝑘= 1+𝜖3 

=  
𝑎𝑘

 2𝜋 
𝑑
2

𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥  1 − 𝑒𝑖 𝛿𝑘 ,𝑥   

 1+𝜖4 

𝑘= 1+𝜖3 

.  19  

Now for any  𝜹𝒌, 

1 − 𝑒𝑖 𝛿𝑘 ,𝑥 =  1 − 𝑒𝑖𝛿𝑘1𝑥1 …  𝑒𝑖𝛿𝑘𝑑𝑥𝑑                                                               

=  1 −   
(𝑖𝛿𝑘1

𝑥1)𝑗1

𝑗1 !

∞

𝑗1=0

 . . .  
(𝑖𝛿𝑘𝑑𝑥𝑑)𝑗𝑑

𝑗𝑑 !

∞

𝑗𝑑=0

   

            =  1 −  
(𝑖𝛿𝑘1

𝑥1)𝑗1  · · · · ·  (𝑖𝛿𝑘𝑑𝑥𝑑)𝑗𝑑

𝑗1!  · · · · ·  𝑗𝑑 !
  𝑗1,…,𝑗𝑑 

𝑗 𝑖≥0

                      

         = −  𝑖𝑗1,…,𝑗𝑑  
(𝑖𝛿𝑘1

𝑥1)𝑗1  · · · · ·  (𝑖𝛿𝑘𝑑𝑥𝑑)𝑗𝑑

𝑗1 !  · · · · ·  𝑗𝑑 !
( 𝑗1,…,𝑗𝑑)∈ 𝐽

 , 

where 𝐽 =  ( 𝑗1 ,… , 𝑗𝑑)  ∈  𝕫𝑑  | 𝑗𝑖 ≥ 0, ( 𝑗1 ,… , 𝑗𝑑) ≠ 0 . Then  (19) becomes 

𝜑 1+𝜖3 , 1+𝜖4 
 𝑥 = −  

𝑎𝑘

 2𝜋 
𝑑
2

𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥 

 1+𝜖4 

𝑘= 1+𝜖3 

  𝑖𝑗1 ,…,𝑗𝑑  
(𝑖𝛿𝑘1

𝑥1)𝑗1  · · · · ·  (𝑖𝛿𝑘𝑑𝑥𝑑)𝑗𝑑

𝑗1 !  · · · · ·  𝑗𝑑 !
( 𝑗1,…,𝑗𝑑)∈ 𝐽

  

                               = −   
𝑥1
𝑗1

 

 
 · · ·   𝑥𝑑

𝑗𝑑
 

 

𝑗1!  · · ·   𝑗𝑑 !
𝑖𝑗1,…,𝑗𝑑

( 𝑗1,…,𝑗𝑑)∈ 𝐽

 
𝑎𝑘

 2𝜋 
𝑑
2

𝛿𝑘1

𝑗1

 

 
 · · · · ·  𝛿𝑘𝑑

𝑗𝑑

 

 
𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥 

 1+𝜖4 

𝑘= 1+𝜖3 

, 

so 

 𝜑 1+𝜖3 , 1+𝜖4 
 𝑥  ≤   

𝜋𝑗1,…,𝑗𝑑

𝑗1!  · · · · ·  𝑗𝑑 !
( 𝑗1 ,…,𝑗𝑑)∈ 𝐽

 𝑎𝑘𝛿𝑘1

𝑗1

 

 
 · · · · ·  𝛿𝑘𝑑

𝑗𝑑

 

 𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥 

 2𝜋 
𝑑
2

 1+𝜖4 

𝑘= 1+𝜖3 

 . 

For brevity denote the outer summand above by  𝒋𝟏,…,𝒋𝒅
  (𝑡). Then 

   𝜑 1+𝜖3 , 1+𝜖4 
 𝑥  

2

 

[−𝜋 ,𝜋]𝑑

𝑑𝑡 

1
2

≤      𝑗1,…,𝑗𝑑
  (𝑥)

( 𝑗1 ,…,𝑗𝑑)∈ 𝐽

 

2 

[−𝜋 ,𝜋]𝑑

𝑑𝑥 

1
2

                       

                                           ≤      𝑗1,…,𝑗𝑑
  (𝑥) 

2
𝑑𝑥

 

[−𝜋 ,𝜋]𝑑

 

1
2

( 𝑗1,…,𝑗𝑑)∈ 𝐽

, 

so that  
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 𝜑 1+𝜖3 , 1+𝜖4 
 

2
≤    

𝜋𝑗1 ,…,𝑗𝑑

𝑗1!  · · ·    𝑗𝑑 !
( 𝑗1,…,𝑗𝑑)∈ 𝐽

    𝑎𝑘𝛿𝑘1

𝑗1

 

 
 · · ·  ·  𝛿𝑘𝑑

𝑗𝑑

 

 𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥 

 2𝜋 
𝑑
2

 1+𝜖4 

𝑘= 1+𝜖3 

 

2

𝑑𝑥

 

[−𝜋 ,𝜋]𝑑

 

1
2

            

                            =   
𝜋𝑗1 ,…,𝑗𝑑

𝑗1!  · · · · ·  𝑗𝑑 !
( 𝑗1,…,𝑗𝑑)∈ 𝐽

   𝑎𝑘  
2 𝛿𝑘1

𝑗1  
2

 

 

 · · · · ·   𝛿𝑘𝑑
𝑗𝑑

 

 
 

2
 1+𝜖4 

𝑘= 1+𝜖3 

 

1
2

                                          

                          ≤   
𝜋𝑗1,…,𝑗𝑑

𝑗1!  · · ·    𝑗𝑑 !
( 𝑗1 ,…,𝑗𝑑)∈ 𝐽

   𝑎𝑘  
2  sup

 1+𝜖3 ≤𝑘≤ 1+𝜖4 
  𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞ 

2(𝑗1,…,𝑗𝑑)

 

 1+𝜖4 

𝑘= 1+𝜖3 

 

1
2

 

                           =   
𝜋 𝑠𝑢𝑝 1+𝜖3 ≤𝑘≤ 1+𝜖4 

  𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞ 
𝑗1,…,𝑗𝑑

 

𝑗1 !  · · · · ·  𝑗𝑑 !
( 𝑗1,…,𝑗𝑑)∈ 𝐽

    𝑎𝑘  
2  

 1+𝜖4 

𝑘= 1+𝜖3 

 

1
2

                   

                      =      
𝜋 𝑠𝑢𝑝 1+𝜖3 ≤𝑘≤ 1+𝜖4 

  𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞ 
𝑗ℓ

 

𝑗ℓ! 

∞

𝑗ℓ=0

 

𝑑

𝑙=1

− 1     𝑎𝑘  
2  

 1+𝜖4 

𝑘= 1+𝜖3 

 

1
2

             

                   =  𝑒
𝜋𝑑  𝑠𝑢𝑝  1+𝜖3 ≤𝑘≤ 1+𝜖4 

  𝑚+𝜖0 𝑘−𝑡𝑘 ∞  
 

 −  1    𝑎𝑘  
2  

 1+𝜖4 

𝑘= 1+𝜖3 

 

1
2

.                                               

Corollary 5.4 .Let  ( 𝑚 + 𝜖0 𝑘)𝑘∈ℕ be an enumeration of 𝕫𝑑 , and let (𝑡𝑘)𝑘∈ℕ ⊂ ℂ𝑑  such that 

 sup
𝑘∈ℕ

   𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞  =  𝐿 < ∞ . Define 𝑒𝑘 ,𝑓𝑘 ∶ ℂ
𝑑 → 𝕔 by  𝑒𝑘 𝑥 =

1

 2𝜋 
𝑑
2

 𝑒𝑖  𝑚+𝜖0 𝑘 ,𝑥  and 

 𝑓𝑘  𝑥 =
1

 2𝜋 
𝑑
2

 𝑒𝑖 𝑡𝑘 ,𝑥 .Then the map 𝑇 ∶  𝐿2[−𝜋,𝜋]𝑑  → 𝐿2[−𝜋,𝜋]𝑑 , defined by 

  𝑇𝑒 𝑚+𝜖0 
= 𝑒 𝑚+𝜖0 

−  𝑓 𝑚+𝜖0 
, satisfies the following estimate: 

                                                        𝑇 ≤ 𝑒𝜋𝐿𝑑 − 1 .                                                                    (20) 

Proof .Lemma 5.3 shows that 𝑇 is uniformly continuous on a dense subset of the ball in 𝐿2(𝐸), so 𝑇 is bounded 

on 𝐿2[−𝜋,𝜋]𝑑 . The inequality (20) follows immediately.  

Corollary 𝟓.𝟓 .Let ( 𝑚 + 𝜖0 𝑘)𝑘∈ℕ , (𝑡𝑘)𝑘∈ℕ ⊂ ℂ𝑑  , and let 𝑒𝑘 , 𝑓𝑘  and 𝑇 be defined as in  Corollary 5.4. For 

each 𝑙 ∈ ℕ, define 𝑇𝑙  by 𝑇𝑙𝑒𝑘 = 𝑒𝑘 − 𝑓𝑘  for 1 ≤ 𝑘 ≤ 𝑙, and 𝑇𝑙𝑒𝑘 = 0 for 𝑙 < 𝑘. If  

 lim𝑘→∞  𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞ = 0, then   lim𝑙→∞ 𝑇𝑙 = 𝑇 in the operator norm. In particular, T is a compact 

operator. 

Proof . As 

(𝑇 −  𝑇𝑙)  𝑎𝑘𝑒𝑘

∞

𝑘=1

 =  𝑎𝑘(𝑒𝑘  −  𝑓𝑘 )

∞

𝑘=1

− 𝑎𝑘(𝑒𝑘  −  𝑓𝑘 )

𝑙

𝑘=1

 

                                             =  𝑎𝑘(𝑒𝑘  −  𝑓𝑘 )

∞

𝑘=𝑙+1

= 𝑇   𝑎𝑘𝑒𝑘

∞

𝑘=𝑙+1

  , 

the estimate derived in Lemma 5.3 yields 

  𝑇 –  𝑇𝑙   𝑎𝑘𝑒𝑘

∞

𝑘=1

  

2

=  𝑇   𝑎𝑘𝑒𝑘

∞

𝑘=𝑙+1

  

2

                        

                                                          ≤  𝑒𝜋𝑑𝑠𝑢𝑝𝑘≥𝑙+1 𝜹𝒌
  

∞

 

 −  1   𝑎𝑘𝑒𝑘

∞

𝑘=1

 

2

, 

so  (𝑇 −  𝑇𝑙) 2 → 0 as 𝑙 → ∞. As 𝑇𝑙  has finite rank, we deduce (see [13]) that 𝑇 is compact . 

  The following proof due to [13] . 

proof of Theorem 5.1 . Step 1: 𝐵 is a compact perturbation of the identity map, namely 

                           𝐵 =  𝐼 +  lim
𝑙→∞

 −𝑃𝑙  +  𝑃𝑙𝐵
−1 𝑃𝑙 

−1 .                                                         (21) 

Since (𝑓𝑘 )𝑘∈ℕ is a Riesz basis for 𝐿2[−𝜋,𝜋]𝑑 , 𝐿∗  =  (𝐼 −  𝑇 ) is an onto isomorphism where  

𝑇𝑒𝑘 = 𝑒𝑘 − 𝑓𝑘 ; so 𝐵 simplifies to (𝐼 − 𝑇)−1(𝐼 −  𝑇∗)−1. We examine 

𝐵−1 =  𝐼 −  𝑇∗  𝐼 −  𝑇  =  𝐼 +  𝑇∗𝑇 −  𝑇 −  𝑇∗ =  𝐼 +  ∆ ,where ∆ is a compact operator. If an operator 

∆∶  𝐻 → 𝐻 is compact then so is ∆∗, hence 𝑃𝑙∆𝑃𝑙 → ∆ in the operator norm because 
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 𝑃𝑙∆𝑃𝑙 − ∆ ≤  𝑃𝑙∆𝑃𝑙 − 𝑃𝑙∆ +  𝑃𝑙∆ − ∆ ≤  ∆𝑃𝑙 − ∆ +  𝑃𝑙∆ − ∆  

=  𝑃𝑙∆
∗ − ∆∗ +  𝑃𝑙∆ − ∆ → 0  .                   

We have 𝐵−1 = lim𝑙→∞ 𝐼 +  𝑃𝑙∆𝑃𝑙  = lim𝑙→∞ 𝐼 +  𝑃𝑙 𝐵
−1 −  𝐼 𝑃𝑙          

              = lim
𝑙→∞

  𝐼 −  𝑃𝑙 +  𝑃𝑙𝐵
−1  𝑃𝑙 .                                                                              

Now  𝑃𝑙𝐵
−1  𝑃𝑙  restricted to the first 𝑙 rows and columns is the Grammian matrix for the set ( 𝑓1 , . . . , 𝑓𝑙) which 

can be shown (in a straightforward manner) to be linearly independent. We conclude that 𝑃𝑙𝐵
−1  𝑃𝑙 is invertible 

as an 𝑙 × 𝑙 matrix. By  𝑃𝑙𝐵
−1  𝑃𝑙 

−1 we mean the inverse as an l × l matrix and zeroes elsewhere. Observing that 

the ranges of 𝑃𝑙𝐵
−1  𝑃𝑙 and  𝑃𝑙𝐵

−1  𝑃𝑙 
−1are in the kernel of  1 −  𝑃𝑙  , and that the range of 𝐼 −  𝑃𝑙  is in the 

kernels of 𝑃𝑙𝐵
−1 𝑃𝑙 and  𝑃𝑙𝐵

−1  𝑃𝑙 
−1, we easily compute 

 𝐼 −  𝑃𝑙  +  𝑃𝑙𝐵
−1  𝑃𝑙 

−1 −1 =  𝐼 −  𝑃𝑙 + 𝑃𝑙𝐵
−1  𝑃𝑙 ,                       

so that  𝐵−1  =  lim𝑙→∞ 𝐼 −  𝑃𝑙  +  𝑃𝑙𝐵
−1  𝑃𝑙 

−1 −1 ,  implying 

𝐵 = lim
𝑙→∞

 𝐼 −  𝑃𝑙  +  𝑃𝑙𝐵
−1  𝑃𝑙 

−1   =  lim
𝑙→∞

𝐵𝑙  =  lim
𝑙→∞

 − 𝑃𝑙  +  𝑃𝑙𝐵
−1  𝑃𝑙 

−1   . 

Step 2: We verify  (16) and its convergence properties. Recalling  (11), we have 

 𝑓𝑗 (𝑡)

𝑗

−  
1

 1 + 𝜖2 
𝑑
    𝐼 –  𝑃𝑙  +  𝑃𝑙𝐵

−1  𝑃𝑙 
−1 𝑓𝑆/ 1+𝜖2 

 
𝑘

 𝑔𝑗  𝑡 –  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

∞

𝑘=1

 

  =  
1

 1 + 𝜖2 
𝑑
   (𝐵 −  𝐵𝑙) 𝑓𝑆/ 1+𝜖2  𝑘

𝑔𝑗  𝑡 −  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

∞

𝑘=1

                   

implying 

 𝑓𝑗 (𝑡)

𝑗

−  
1

 1 + 𝜖2 
𝑑
    𝑃𝑙𝐵

−1  𝑃𝑙 
−1𝑓𝑆/ 1+𝜖2  𝑘

 𝑔𝑗  𝑡 –  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

𝑙

𝑘=1

=                               

 
1

 1 + 𝜖2 
𝑑
    𝐵 –  𝐵𝑙 𝑓𝑆/ 1+𝜖2 

 
𝑘
𝑔𝑗  𝑡 –  

𝑡𝑘
 1 + 𝜖2 

 

∞

𝑘=1𝑗

+
1

 1 + 𝜖2 
𝑑
  𝑓𝑗  

𝑡𝑘
 1 + 𝜖2 

 𝑔𝑗  𝑡 −  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

∞

𝑘=𝑙+1

. 

Therefore, 

  𝑓𝑗  .  

𝑗

−  
1

 1 + 𝜖2 
𝑑
    𝑃𝑙𝐵

−1  𝑃𝑙 
−1𝑓𝑆/ 1+𝜖2 

 
𝑘

 𝑔𝑗  . –  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

𝑙

𝑘=1

 

2

                                

=  
1

 1 + 𝜖2 
𝑑
   (𝐵 −  𝐵𝑙) 𝑓𝑆/ 1+𝜖2 

 
𝑘
𝑔𝑗  .−  

𝑡𝑘
 1 + 𝜖2 

 

𝑗

∞

𝑘=1

+
1

 1 + 𝜖2 
𝑑
  𝑓𝑗  

𝑡𝑘
 1 + 𝜖2 

 𝑔𝑗  .−  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

∞

𝑘=𝑙+1

 

[− 1+𝜖2 𝜋 , 1+𝜖2 𝜋]𝑑

 

=
1

 1 + 𝜖2 
𝑑
 ℱ−1 𝑔𝑗   .      𝐵 –  𝐵𝑙 𝑓𝑆/ 1+𝜖2  𝑘

𝑒
𝑖 .  ,

𝑡𝑘
 1+𝜖2 

 
∞

𝑘=1

+   𝑓𝑗  
𝑡𝑘

 1 + 𝜖2 
 𝑒

𝑖 .  ,
𝑡𝑘

 1+𝜖2 
 

𝑗

∞

𝑘=𝑙+1

  

[− 1+𝜖2 𝜋 , 1+𝜖2 𝜋]𝑑

                             

after taking the inverse Fourier transform. Now 

  𝑓𝑗   .  

𝑗

−  
1

 1 + 𝜖2 
𝑑
    𝑃𝑙𝐵

−1  𝑃𝑙 
−1𝑓𝑆/ 1+𝜖2  𝑘

 𝑔𝑗  . –  
𝑡𝑘

 1 + 𝜖2 
 

𝑗

𝑙

𝑘=1

 

2

                        

       ≤
1

 1 + 𝜖2 
𝑑
    𝐵 –  𝐵𝑙 𝑓𝑆/ 1+𝜖2  𝑘

𝑒
𝑖 .  ,

𝑡𝑘
 1+𝜖2 

 
∞

𝑘=1

 

[− 1+𝜖2 𝜋 , 1+𝜖2 𝜋]𝑑

+
1

 1 + 𝜖2 
𝑑
   𝑓𝑗  

𝑡𝑘
 1 + 𝜖2 

 𝑒
𝑖 .  ,

𝑡𝑘
 1+𝜖2 

 

𝑗

∞

𝑘=𝑙+1

 

[− 1+𝜖2 𝜋 , 1+𝜖2 𝜋]𝑑

 



Multidimensional of gradually series  bandlimited functions and frames 

www.ijesi.org                                                              59 | Page 

   ≤
𝑀

 1 + 𝜖2 
𝑑
  𝐵 –  𝐵𝑙 𝑓𝑆/ 1+𝜖2 

 
ℓ2(ℕ)

+
𝑀

 1 + 𝜖2 
𝑑
    𝑓𝑗  

𝑡𝑘
 1 + 𝜖2 

  
2

𝑗

∞

𝑘=𝑙+1

 

1
2

,       

since   𝑓𝑘  
·

 1+𝜖2 
  

𝑘

 is a Riesz basis for 𝐿2[− 1 + 𝜖2 𝜋,  1 + 𝜖2 𝜋]𝑑 . Since 𝐵𝒍 → 𝐵 as 𝑙 → ∞ and 

 𝑓𝑗  
𝑡𝑘

 1+𝜖2 
  

𝑘

 ∈ ℓ2(ℕ), the last two terms in the inequality above tend to zero, which proves the required 

result. Finally, to compute  𝑃𝑙𝐵
−1  𝑃𝑙 𝑛𝑚  , recall that 𝐵−1  =  (𝐼 − 𝑇∗)(𝐼 − 𝑇 ). Proceeding in a manner similar 

to the proof of  (10), we obtain  

𝐵𝑚 𝑚+𝜖0 
−1 =  𝐿𝐿∗𝑒 𝑚+𝜖0 

, 𝑒𝑚  =  𝐿∗𝑒 𝑚+𝜖0 
, 𝐿∗𝑒𝑚  =   𝑓 𝑚+𝜖0 

, 𝑓𝑚   

                               =  𝑠𝑖𝑛𝑐𝜋 𝑡 𝑚+𝜖0 ,1
− 𝑡𝑚 ,1 · · · · ·  𝑠𝑖𝑛𝑐𝜋 𝑡 𝑚+𝜖0 ,𝑑

 − 𝑡𝑚 ,𝑑 .       

The entries of 𝑃𝑙𝐵
−1  𝑃𝑙 agree with those of 𝐵−1 when 1 ≤  𝑚 + 𝜖0 ,𝑚 ≤ 𝑙.  

One generalization of Kadec’s 1/4 theorem given by Pak and Shin in [11] (which is actually a special case of 

Avdonin’s theorem) is: 

Theorem 5.6 . Let (𝑡 𝑚+𝜖0 
)𝑘∈𝕫 ⊂  ℂ  be a sequence of distinct points such that 

lim
| 𝑚+𝜖0 |→∞

𝑠𝑢𝑝| 𝑚 + 𝜖0  − 𝑡 𝑚+𝜖0 |  =  𝐿 <
1

4
  .                                       

Then the sequence of functions ( 𝑓𝑘)𝑘∈𝕫 , defined by  𝑓𝑘  𝑥 =  
1

 2𝜋
𝑒𝑖𝑡𝑘𝑥 , 

is a Riesz basis for 𝐿2[−𝜋,𝜋]. Theorem 5.6 shows that in the univariate case of Theorem 5.1 the restriction that 

( 𝑓𝑘)𝑘∈ℕ  is a Riesz basis for 𝐿2[−𝜋,𝜋]can be dropped. The following example shows that the multivariate case 

is very different. Let  𝑒 𝑚+𝜖0 
 
 𝑚+𝜖0 

 be an orthonormal basis for a Hilbert space 𝐻. Let 𝑓1  ∈  𝐻 with   𝑓1 =

 1 , then ( 𝑓1 , 𝑒2 ,𝑒3 , . . . ) is a Riesz basis for 𝐻 if and only if  𝑓1 , 𝑒1 ≠ 0. Verifying that the map 𝑇, given by 

𝑒𝑘 ⟼  𝑒𝑘  for 𝑘 >  1 and 𝑒1 ⟼  𝑓1 , is a continuous bijection is routine,  so 𝑇 is an isomorphism via the Open 

Mapping theorem. In the language of Theorem 5.1, ( 𝑓1 , 𝑒2 , 𝑒3 , . . . )  is a Riesz basis for 𝐿2[−𝜋,𝜋] if and only if 

0 ≠  𝑠𝑖𝑛𝑐 𝜋𝑡1,1 · · · · ·  𝑠𝑖𝑛𝑐 𝜋𝑡1,𝑑  , that is, if and only if 

 𝑡1 ∈ (ℂ\{±1, ±2, . . . })𝑑 . 
 

VI. Generalizations of Kadec’s 1/4 theorem 
 Corollary 5.4 yields the following generalization of Kadec’s theorem in d dimensions (see [13]) . 

Corollary 6.1 .Let (  𝑚 + 𝜖0 𝑘)𝑘∈ℕ  be an enumeration of 𝕫𝑑  and let ( 𝑡𝑘)𝑘∈ℕ  ⊂ ℂ𝑑  such that 

                                     sup
𝑘∈𝕫

   𝑚 + 𝜖0 𝑘  − 𝑡𝑘 ∞  =  𝐿 <
ln(2)

𝜋𝑑
.                                                       (22) 

Then the sequence ( 𝑓𝑘)𝑘∈ℕ  defined by 𝑓𝑘 (𝑥)  =  
1

(2𝜋)𝑑/2
 𝑒𝑖 𝑥 ,𝑡𝑘   is a Riesz basis for 𝐿2[−𝜋,𝜋]𝑑 . 

 The proof is immediate. Note that  (20) implies that the map 𝑇 given in Corollary 5.4 has norm less than 1. We 

conclude that the map (𝐼 −  𝑇 )𝑒𝑘  =  𝑓𝑘  is invertible by considering its Neumann series. 

The proof of Corollary 5.4 and Corollary 6.1 are straightforward generalizations of the univariate result proved 

by Duffin and Eachus [8]. Kadec improved the value of the constant in the inequality (22) 

 (for 𝑑 =  1) from 
ln (2)

𝜋
 to the optimal value of 1/4; this is his celebrated “1/4 theorem” [10].Kadec’s method of 

proof is to expand 𝑒𝑖𝛿𝑥  with respect to the orthogonal basis 

 1, 𝑐𝑜𝑠( 𝑚 + 𝜖0 𝑥), 𝑠𝑖𝑛   𝑚 + 𝜖0  −  
1

2
 𝑥 

 𝑚+𝜖0 ∈ℕ

                                                   

for 𝐿2[−𝜋,𝜋] , and use this expansion to estimate the norm of  T .  

 In the proof of Corollary 5.4 and Corollary 6.1 we simply used a Taylor series (see [13]). Unlike the estimates 

in Kadec’s theorem, the estimate in  (20) can be used for any sequence ( 𝑡𝑘)𝑘∈ℕ ⊂ ℂ𝑑such that 

 𝑠𝑢𝑝𝑘∈𝕫  𝑚 + 𝜖0 𝑘 − 𝑡𝑘 ∞ =  𝐿 < ∞, not only those for which the exponentials (𝑒𝑖𝑡 𝑚+𝜖0 
𝑥) 𝑚+𝜖0 

 form a 

Riesz basis. An impressive generalization of Kadec’s 1/4 theorem when 𝑑 =  1 is Avdonin’s “1/4 in the mean” 

theorem [1].Sun and Zhou (see [12] second half of Theorem 1.3) refined Kadec’s argument to obtain a partial 

generalization of his result in higher dimensions:  

Theorem 6.2 .Let (𝑎 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

𝑑  ⊂  ℂ𝑑  such that  0 <  𝐿 <
1

4
 , 

𝐷𝑑  𝐿 =  1 −  𝑐𝑜𝑠𝜋𝐿 +  𝑠𝑖𝑛𝜋𝐿 +  
𝑠𝑖𝑛𝜋𝐿

𝜋𝐿
 
𝑑

−  
𝑠𝑖𝑛𝜋𝐿

𝜋𝐿
 
𝑑

   , 

and 
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 𝑎 𝑚+𝜖0 
 −  𝑚 + 𝜖0  ∞

 ≤  𝐿,  𝑚 + 𝜖0  ∈  𝕫𝑑 . If  𝐷𝑑  𝐿  <  1, then   
1

(2𝜋)𝑑
 𝑒𝑖 𝑎 𝑚+𝜖0  

,(·)   is a Riesz basis for 

𝐿2[−𝜋,𝜋]𝑑  with frame bounds (1 −  𝐷𝑑  𝐿 )
2  and (1 +  𝐷𝑑 𝐿 )

2  .In the one-dimensional case, Kadec’s theorem 

is recovered exactly from Theorem 6.2. When 𝑑 >  1, the value 𝑥𝑑  satisfying 0 <  𝑥𝑑  <  
1

4
 and 𝐷𝑑 (𝑥𝑑)  = 1 is 

an upper bound for any value of 𝐿 satisfying  0 <  𝐿 <  
1

4
 and 𝐷𝑑 (𝐿)  <  1. The value of 𝑥𝑑  is not readily 

apparent, whereas the constant in Corollary 6.1 is 
ln  2

𝑥𝑑
 . A relationship between this number and 𝑥𝑑  is given in 

the following theorem (whose proof is omitted). 

 

Theorem 6.3 .Let 𝑥𝑑  be the unique number satisfying 0 <  𝑥𝑑  <  
1

4
 and 𝐷𝑑 (𝑥𝑑)  =  1. Then 

                              lim
𝑑→∞

𝑥𝑑  −  
ln 2
𝜋𝑑

(ln 2)2

12𝜋𝑑2

       =          1   .                                  

Thus, for sufficiently large 𝑑, Theorem 6.2 and Corollary 6.1 are essentially the same. 

7. A method of approximation of biorthogonal functions and a recovery of a theorem of Levinson 
   In this section we apply (see [13]) the techniques developed previously to approximate the biorthogonal 

functions to Riesz bases  
1

 2𝜋
𝑒𝑖𝑡 𝑚+𝜖0 

(·)  for which the synthesis operator is small perturbation of the identity. 

 Definition 7.1. A Kadec sequence is a sequence (𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 of real numbers satisfying 

sup
 𝑚+𝜖0 ∈𝕫

 𝑡 𝑚+𝜖0  −  𝑚 + 𝜖0  =  𝐷 <  
1

4
 .                                                     

Theorem 7.2  .Let (𝑡 𝑚+𝜖0 ) 𝑚+𝜖0 ∈𝕫  ⊂  ℂ be a sequence (with 𝑡 𝑚+𝜖0  ≠  0  for  𝑚 + 𝜖0  ≠  0) such that 

( 𝑓 𝑚+𝜖0 ) 𝑚+𝜖0  =   
1

 2𝜋
𝑒𝑖𝑡 𝑚+𝜖0 

(·) 
 𝑚+𝜖0 

 is a Riesz basis for 𝐿2[−𝜋,𝜋], and let  ( 𝑒 𝑚+𝜖0 ) 𝑚+𝜖0  be the 

standard exponential orthonormal basis for 𝐿2[−𝜋,𝜋]. If the map L given by 𝐿𝑒 𝑚+𝜖0 
 =  𝑓 𝑚+𝜖0 

 satisfies the 

estimate 𝐼 −  𝐿 <  1, then the biorthogonals 𝐺 𝑚+𝜖0 
 of 

1

 2𝜋
ℱ( 𝑓 𝑚+𝜖0 

)(·)  =  𝑠𝑖𝑛𝑐(𝜋(·  −𝑡 𝑚+𝜖0 
))  

in  𝑃𝑊[−𝜋 ,𝜋]  are  

            𝐺 𝑚+𝜖0 
 𝑡 =  

𝐻 𝑡 

 𝑡 – 𝑡 𝑚+𝜖0 
 𝐻′ 𝑡 𝑚+𝜖0 

 
 ,  𝑚 + 𝜖0  ∈  𝕫  ,                                    (23) 

where 

                            𝐻 𝑡 =   𝑡 − 𝑡0   1 −  
𝑡

𝑡 𝑚+𝜖0 
  1 −  

𝑡

𝑡− 𝑚+𝜖0 
 

∞

 𝑚+𝜖0 =1

  .                              (24) 

Definition 7.3 . Let  (𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 ⊂  ℂ be a sequence such that 

( 𝑓 𝑚+𝜖0 
) 𝑚+𝜖0 

 =   
1

 2𝜋
𝑒𝑖𝑡 𝑚+𝜖0 

(·) 
 𝑚+𝜖0 

 is a Riesz basis for 𝐿2[−𝜋,𝜋]. If 𝑙 ≥  0, the𝑙-truncated sequence 

(𝑡𝑙 , 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 is defined by 𝑡𝑙 , 𝑚+𝜖0 
 = 𝑡 𝑚+𝜖0 

 if | 𝑚 + 𝜖0 |  ≤ 𝑙 and 𝑡𝑙 , 𝑚+𝜖0 
=  𝑚 + 𝜖0  otherwise. 

Define 𝑓𝑙 , 𝑚+𝜖0 
 =  

1

 2𝜋
𝑒𝑖𝑡𝑙 , 𝑚+𝜖0 

(·)
 for  𝑚 + 𝜖0 ∈ 𝕫, 𝑙 ≥ 0. 

Let 𝑃𝑙 ∶  𝐿2[−𝜋,𝜋] →  𝐿2[−𝜋,𝜋] be the orthogonal projection onto span{𝑒−𝑙 , . . . , 𝑒𝑙}. 
Proposition 7.4 .Let (𝑡 𝑚+𝜖0 ) 𝑚+𝜖0 ∈𝕫  ⊂  ℂ be a sequence such that ( 𝑓 𝑚+𝜖0 ) 𝑚+𝜖0  (defined above) is a Riesz 

basis for 𝐿2[−𝜋,𝜋]. If ( 𝑒 𝑚+𝜖0 
) 𝑚+𝜖0 

 is the standard exponential orthonormal basis for 𝐿2[−𝜋,𝜋] and the map 

𝐿 (defined above) satisfies the estimate   𝐼 −  𝐿 = 𝛿 < 1, then the following are true: 

  (i) For 𝑙 ≥ 0, the sequence ( 𝑓𝑙 , 𝑚+𝜖0 
) 𝑚+𝜖0 

 is a Riesz basis for𝐿2[−𝜋,𝜋]. 

  (ii) For 𝑙 ≥ 0, the map 𝐿𝑙  defined by 𝐿𝑙𝑒 𝑚+𝜖0 = 𝑓𝑙 , 𝑚+𝜖0  satisfies  𝐿𝑙
−1  ≤

1

1−𝛿
 . 

Proof .If  ( 𝑐 𝑚+𝜖0 ) 𝑚+𝜖0  ∈  ℓ2(𝕫), then 

 𝐼 − 𝐿𝑙   𝑐 𝑚+𝜖0 
𝑒 𝑚+𝜖0 

 𝑚+𝜖0 

 =  𝑐 𝑚+𝜖0 
 𝑒 𝑚+𝜖0 

− 𝐿𝑙𝑒 𝑚+𝜖0 
 

 𝑚+𝜖0 

=   𝑒 𝑚+𝜖0 
− 𝑓 𝑚+𝜖0 

 

  𝑚+𝜖0  ≤𝑙

  

     = (𝐼 − 𝐿)𝑃𝑙   𝑐 𝑚+𝜖0 
𝑒 𝑚+𝜖0 

 𝑚+𝜖0 

 , 

so that 

                                     𝐼 −  𝐿𝑙 =   𝐼 −  𝐿 𝑃𝑙    .                                                                      (25) 
From this,  𝐼 −  𝐿𝑙 ≤ 𝛿, which implies (i) and (ii).  
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 Define the biorthogonal functions of ( 𝑓𝑙 , 𝑚+𝜖0 
) 𝑚+𝜖0 

 to be ( 𝑓𝑙 , 𝑚+𝜖0 
∗

 
) 𝑚+𝜖0 

. Passing to the Fourier transform 

, we have 
1

 2𝜋
ℱ( 𝑓𝑙 , 𝑚+𝜖0 

)(𝑡)  = 𝑠𝑖𝑛𝑐(𝜋(𝑡 − 𝑡𝑙 , 𝑚+𝜖0 
))  and 

 𝐺𝑙 , 𝑚+𝜖0 
(𝑡)  =  

1

 2𝜋
ℱ( 𝑓𝑙 , 𝑚+𝜖0 

∗ )(𝑡). Define the biorthogonal functions of ( 𝑓 𝑚+𝜖0 
) 𝑚+𝜖0 

 similarly. 

Lemma 7.5 . If ( 𝑡 𝑚+𝜖0 ) 𝑚+𝜖0  ⊂ ℂ satisfies the hypotheses of Proposition 7.4, then 

lim
𝑙→∞

𝐺𝑙 , 𝑚+𝜖0  =  𝐺 𝑚+𝜖0     in      𝑃𝑊[−𝜋 ,𝜋]  .                                                  

Proof . Note that  𝛿 𝑚+𝜖0 𝑚  =  𝑓𝑙 , 𝑚+𝜖0 , 𝑓𝑙 ,𝑚
∗  =  𝐿𝑙𝑒 𝑚+𝜖0 , 𝑓𝑙 ,𝑚

∗  =  𝑒 𝑚+𝜖0 , 𝐿𝑙
∗𝑓𝑙 ,𝑚

∗   so that for all 𝑚, 𝑓𝑙 ,𝑚
∗ =

 (𝐿𝑙
∗ )−1𝑒𝑚 . Similarly, 𝑓𝑚

∗ =  (𝐿 
∗ )−1𝑒𝑚 . We have 

𝑓𝑙 ,𝑚
∗ −  𝑓𝑚

∗ =  (𝐿𝑙
∗ )−1  (𝐿 

∗ )−1 𝑒𝑚  = (𝐿𝑙
∗ )−1 𝐿 

∗  −  𝐿𝑙
∗ (𝐿 

∗ )−1𝑒𝑚 . Now  (84) implies 

 𝐿 −  𝐿𝑙
  =  (𝐼 −  𝑃𝑙)(𝐿 −  𝐼), so that 𝑓𝑙 ,𝑚

∗ −  𝑓𝑚
∗ =  𝐿𝑙

∗  −1 𝐿 
∗  −  𝐼  𝐼 −  𝑃𝑙  𝐿 

∗  −1𝑒𝑚 . Applying Proposition 

7.4 yields   𝑓𝑙 ,𝑚
∗ −  𝑓𝑚

∗ ≤
1

1− 𝛿
  𝐿 

∗  −  𝐼 (𝐼 −  𝑃𝑙)(𝐿 
∗ )−1𝑒𝑚  , which for fixed 𝑚 goes to 0 as 𝑙 → ∞. We 

conclude   lim𝑙→∞ 𝑓𝑙 ,𝑚
∗ =  𝑓𝑚

∗  , which, upon passing to the Fourier transform, yields lim𝑙→∞ 𝐺𝑙 ,𝑚  =  𝐺𝑚  . 

Proof of Theorem 7.2. We see that  𝛿 𝑚+𝜖0 𝑚
=  𝐺𝑙 ,𝑚 , 𝑆𝑙 , 𝑚+𝜖0 

 , where 

 𝑆𝑙 , 𝑚+𝜖0 (𝑡) = 𝑠𝑖𝑛𝑐(𝜋(𝑡 − 𝑡 𝑚+𝜖0 )) when | 𝑚 + 𝜖0 |  ≤ 𝑙 and 𝑆𝑙 , 𝑚+𝜖0 (𝑡)  =  𝑠𝑖𝑛𝑐(𝜋(𝑡 −  𝑚 + 𝜖0 )) when 

|𝑚|  > 𝑙. Without loss of generality, let |𝑚|  < 𝑙.  (1) implies that 𝐺𝑙 ,𝑚 (𝑘) =  0 when |𝑘|  > 𝑙. By the WKS 

theorem we have 

𝐺𝑙 ,𝑚  𝑡 =  𝐺𝑙 ,𝑚  𝑘 𝑠𝑖𝑛𝑐 𝜋 𝑡 – 𝑘  

𝑘=𝑙

𝑘=−𝑙

  =   
 −1 𝑘−1𝑡𝐺𝑙 ,𝑚  𝑘 

𝑘 − 𝑡

𝑘=𝑙

𝑘=−𝑙

 𝑠𝑖𝑛𝑐 𝜋𝑡                 

                                                                               =  
𝑤𝑙  𝑡 

  𝑘 – 𝑡  −𝑘 – 𝑡 𝑙
𝑘=1

𝑠𝑖𝑛𝑐 𝜋𝑡 ,                             

where 𝑤𝑙  is a polynomial of degree at most 2𝑙. Noting that 

𝑠𝑖𝑛𝑐 𝜋𝑡 =   1 −  
𝑡2

𝑘2
 

∞

𝑘=1

 and  (𝑘 − 𝑡)(−𝑘 − 𝑡)

𝑙

𝑘=1

= (−1)𝑙(𝑙!)2   1 −  
𝑡2

𝑘2
 

𝑙

𝑘=1

, 

we have 

𝐺𝑙 ,𝑚  𝑡 =  
 −1 𝑙𝑤𝑙 𝑡 

 𝑙! 2
  1 −  

𝑡2

𝑘2
 

∞

𝑘=𝑙+1

 .                                             

Again by  (1), 𝛿 𝑚+𝜖0 𝑚
 =  𝐺𝑙 ,𝑚 (𝑡 𝑚+𝜖0 

) when | 𝑚 + 𝜖0 |  ≤ 𝑙 so that 

𝛿 𝑚+𝜖0 𝑚
=  
 −1 𝑙

 𝑙! 2
𝑤𝑙 𝑡 𝑚+𝜖0 

   1 −  
𝑡 𝑚+𝜖0 

2  

𝑘2
 

∞

𝑘=𝑙+1

 .                                        

This determines the zeroes of 𝑤𝑙 . We deduce that 

𝑤𝑙 𝑡 =  
𝑐𝑙   𝑡 – 𝑡𝑘  𝑡 – 𝑡−𝑘 

𝑘=𝑙
𝑘=1

𝑡 − 𝑡𝑚
                                                         

for some constant 𝑐𝑙  . Absorbing constants, we have  𝐺𝑙 ,𝑚  𝑡 =  
𝑐𝑙𝐻𝑙 𝑡 

𝑡  −𝑡𝑚
,  where 

𝐻𝑙 𝑡 =   𝑡 − 𝑡0   1 −  
𝑡

𝑡𝑘
  1 −  

𝑡

𝑡−𝑘
 

𝑙

𝑘=1

  1 −  
𝑡 

2  

𝑘2
 

∞

 𝑙+1

.                          

Now 0 =  𝐻𝑙(𝑡𝑚 ), so 𝐺𝑙 ,𝑚 (𝑡)  =  𝑐𝑙
𝐻𝑙 𝑡 −𝐻𝑙(𝑡𝑚 )

𝑡−𝑡𝑚
. Taking limits,  

𝑐𝑙  =  
1

 𝐻𝑙 
′  𝑡𝑚  

  . This yields  𝐺𝑙 ,𝑚  𝑡 =  
𝐻𝑙 𝑡 

 𝑡  –𝑡𝑚  𝐻𝑙
′

 
 𝑡𝑚  

  .   Define 

𝐻 𝑡 =   𝑡 − 𝑡0   1 −  
𝑡

𝑡𝑘
  1 −  

𝑡

𝑡−𝑘
 

∞

𝑘=1

 .                                

Basic complex analysis shows that 𝐻 is entire, and 𝐻𝑙  → 𝐻 and  𝐻𝑙
′

 
 → 𝐻 

′
 
 uniformly on compact subsets of 𝐶. 

Furthermore, 𝐻 
′(𝑡𝑘)  ≠  0 for all 𝑘, since each 𝑡𝑘  is a zero of 𝐻 of multiplicity one. Together we have 

lim
𝑙→∞

𝐺𝑙 ,𝑚 (𝑡)  =  
𝐻(𝑡)

(𝑡 − 𝑡𝑚 )𝐻 
′ (𝑡𝑚 )

, 𝑡 ∈  ℂ. 

By the foregoing lemma, 𝐺𝑙 ,𝑚  → 𝐺𝑚 . Observing that convergence in 𝑃𝑊[−𝜋 ,𝜋] implies pointwise convergence 

yields the desired result.Levinson proved a version of Theorem 7.2 in the case where (𝑡 𝑚+𝜖0 ) 𝑚+𝜖0 ∈𝕫 is a 

Kadec sequence. His original proof is found in [11, pp. 47–67]. We recall that if (𝑓 𝑚+𝜖0 
) 𝑚+𝜖0 

 is a Riesz basis 

arising from a Kadec sequence, then the synthesis operator L satisfies  𝐼 −  𝐿  <  1. Levinson’s theorem is 

then recovered from Theorem 7.2. 
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  Now we show the following Corollary 

Corollary 7.6. Let (2𝑡 𝑚+𝜖0 
) 𝑚+𝜖0 ∈𝕫

 ⊂  ℂ be a sequence and  𝑓2 𝑚+𝜖0 
2  

 𝑚+𝜖0 
 is a Riesz basis for 𝐿2[−𝜋,𝜋]. 

If ( 𝑒2 𝑚+𝜖0 ) 𝑚+𝜖0  is the standard exponential orthonormal basis for 𝐿2[−𝜋,𝜋] and the map 𝐿2  satisfies the 

estimate   𝐼 −  𝐿2 = 𝛿 < 1, then the following are hold: 

  (i) For 𝑙 ≥ 0, the sequence  𝑓2𝑙 ,2 𝑚+𝜖0 
2  

 𝑚+𝜖0 
 is a Riesz basis for𝐿2[−𝜋,𝜋]. 

  (ii) For 𝑙 ≥ 0, the map 𝐿2𝑙
2  defined by 𝐿2𝑙

2 𝑒2 𝑚+𝜖0 
= 𝑓2𝑙 ,2 𝑚+𝜖0 

2  satisfies  𝐿2𝑙
−2  ≤

1

 1−𝛿 2
 . 

Proof . For  ( 𝑐2 𝑚+𝜖0 ) 𝑚+𝜖0  ∈  ℓ2(𝕫), we have  

 𝐼 − 𝐿2𝑙
2    𝑐2 𝑚+𝜖0 

𝑒2 𝑚+𝜖0 

 𝑚+𝜖0 

 =  𝑐2 𝑚+𝜖0 
 𝑒2 𝑚+𝜖0 

− 𝐿2𝑙
2 𝑒2 𝑚+𝜖0 

 

 𝑚+𝜖0 

            

=   𝑒2 𝑚+𝜖0 − 𝑓2 𝑚+𝜖0 
2  

  𝑚+𝜖0  ≤𝑙

= (𝐼 − 𝐿2)𝑃2𝑙   𝑐2 𝑚+𝜖0 𝑒2 𝑚+𝜖0 

 𝑚+𝜖0 

 , 

so that                                     𝐼 −  𝐿2𝑙
2  =   𝐼 −  𝐿2 𝑃2𝑙    .                                                                       

  Hence  𝐼 −  𝐿2𝑙
2  ≤ 𝛿, which gives (i) and (ii). Hence from Definition 2.4 we can show that  

𝐴   𝑓𝑗   
2

𝑗

≤     𝑓𝑗 , 𝑓2𝑙 ,2 𝑚+𝜖0 
2

𝐿𝑒 𝑚+𝜖0 

𝐿2𝑙
2 𝑒2 𝑚+𝜖0 

   

2

𝑗 𝑚+𝜖0 

≤  𝐴 + 𝜖1   𝑓𝑗   
2

𝑗

, for every 𝑓𝑗 ∈ 𝐻, 𝜖1 > 0 . 
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